Na+-activated K+ current contributes to postexcitatory hyperpolarization in neocortical intrinsically bursting neurons.

نویسندگان

  • Silvana Franceschetti
  • Tatiana Lavazza
  • Giulia Curia
  • Patrizia Aracri
  • Ferruccio Panzica
  • Giulio Sancini
  • Giuliano Avanzini
  • Jacopo Magistretti
چکیده

The ionic mechanisms underlying the termination of action-potential (AP) bursts and postburst afterhyperpolarization (AHP) in intrinsically bursting (IB) neocortical neurons were investigated by performing intracellular recordings in thin slices of rat sensorimotor cortex. The blockade of Ca(2+)-activated K(+) currents enhanced postburst depolarizing afterpotentials, but had inconsistent and minor effects on the amplitude and duration of AHPs. On the contrary, experimental conditions resulting in reduction of voltage-dependent Na(+) entry into the cells caused a significant decrease of AHP amplitude. Slice perfusion with a modified artificial cerebrospinal fluid in which LiCl (40 mM) partially replaced NaCl had negligible effects on the properties of individual APs, whereas it consistently increased burst length and led to an approximately 30% reduction in the amplitude of AHPs following individual bursts or short trains of stimulus-induced APs. Experiments performed by partially replacing Na(+) ions with choline revealed a comparable reduction in AHP amplitude associated with an inhibition of bursting activity. Moreover, in voltage-clamp experiments carried out in both in situ and acutely isolated neurons, partial substitution of extracellular NaCl with LiCl significantly and reversibly reduced the amplitude of K(+) currents evoked by depolarizing stimuli above-threshold for Na(+)-current activation. The above effect of Na(+)-to-Li(+) substitution was not seen when voltage-gated Na(+) currents were blocked with TTX, indicating the presence of a specific K(+)-current component activated by voltage-dependent Na(+) (but not Li(+)) influx. The above findings suggest that a Na(+)-activated K(+) current recruited by the Na(+) entry secondary to burst discharge significantly contributes to AHP generation and the maintenance of rhythmic burst recurrence during sustained depolarizations in neocortical IB neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of persistent sodium current in bursting activity of mouse neocortical networks in vitro.

Most types of electrographic epileptiform activity can be characterized by isolated or repetitive bursts in brain electrical activity. This observation is our motivation to determine mechanisms that underlie bursting behavior of neuronal networks. Here we show that the persistent sodium (Na(P)) current in mouse neocortical slices is associated with cellular bursting and our data suggest that th...

متن کامل

Bursting Activity in Neocortical Networks

Most types of electrographic epileptiform activity can be characterized by isolated or repetitive bursts in brain electrical activity. This observation is our motivation to determine mechanisms that underlie bursting behavior of neuronal networks. Here we show that the persistent sodium current (Na P) in mouse neocortical slices is associated with cellular bursting, and our data suggests that t...

متن کامل

Cortical hyperpolarization-activated depolarizing current takes part in the generation of focal paroxysmal activities.

During paroxysmal neocortical oscillations, sudden depolarization leading to the next cycle occurs when the majority of cortical neurons are hyperpolarized. Both the Ca(2+)-dependent K(+) currents (I(K(Ca))) and disfacilitation play critical roles in the generation of hyperpolarizing potentials. In vivo experiments and computational models are used here to investigate whether the hyperpolarizat...

متن کامل

Expression of a functional hyperpolarization-activated current (Ih) in the mouse nucleus reticularis thalami.

The GABAergic neurons of the nucleus reticularis thalami (nRT) express the type 2 hyperpolarization-activated cAMP-sensitive (HCN2) subunit mRNA, but surprisingly, they were reported to lack the hyperpolarization-activated (Ih) current carried by this subunit. Using the voltage-clamp recordings in the thalamocortical slice preparation of the newborn and juvenile mice (P6-P23), we demonstrate th...

متن کامل

Myomodulin increases Ih and inhibits the NA/K pump to modulate bursting in leech heart interneurons.

In the medicinal leech, a rhythmically active 14-interneuron network composes the central pattern generator for heartbeat. In two segmental ganglia, bilateral pairs of reciprocally inhibitory heart interneurons (oscillator interneurons) produce a rhythm of alternating bursts of action potentials that paces activity in the pattern-generating network. The neuropeptide myomodulin decreases the per...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of neurophysiology

دوره 89 4  شماره 

صفحات  -

تاریخ انتشار 2003